

CHAPTER 16 U-VALUES

GET CONSTRUCTIVE ©

1

U-Values

- U-values refer to how well building materials conduct heat.
- The U-value is a measurement of the amount of heat lost from a material.
- The U-value is:

"The heat transfer of 1 Kelvin through 1m² of a building material"

U-Values

U-value = W/m²K

- W = Watt (unit of electricity)
- m = metre
- K = Kelvin (unit of temperature)

Κ	n	°C	
373 —		- 100	Boiling point of water
363 —		- 90	at sea level
353 —		- 80	58°C (136°F) Highest
343 —		- 70	temperature recorded in
333 —		- 60	the world. El Azizia, Libya
323 —		- 50	September 1992
313 —		- 40	A hot day
303 —		- 30	Average body temperature
293 —		- 20	37°C(98.6°F)
283 —	L	- 10	
273 —	L	- 0	Freezing (melting) point
263 —	L	10	of water (ice) at sea level
253 —	L	20	
243 —	L		A bitterly cold day
233 —	L	40	
223 -	L	50	
213 —	L	60	
203 —	L	70	
193 —	L	80	-89°C (-129°F) Lowest
183 —	L	90	temperature recorded in
173 —	L		the world. Vostok, Antarctica,
	I	l	July 1983
()	

U-Values

- The lower the U-value, the less heat that is lost through the building materials.
- U-values vary according to the following:
 - The materials used in the building
 - The building's location
 - The temperature difference between the outside and the inside

Building Element Values

Building regulations set out the maximum U-values for each element of the building. The current values can be seen in the table below.

TABLE 16.1 CURRENT (2011) BUILDING REGULATIONS

Building element	Maximum acceptable U-value (W/m²k)
Roof (pitched with horizontal insulation)	0.16
Roof (pitched with parallel insulation)	0.16
Roof (flat)	0.2
Wall	0.21
Floor	0.21
Window/Door/Rooflight	1.6

Building Energy Rating (BER)

- BER gives an assessment of the efficiency of the home.
- It considers:
 - The energy used by the building
 - The CO₂ output of the building
- It is expressed as primary energy use per unit of floor area per year

kWh/m²/yr

Building Energy Rating (BER)

- Energy ratings are scaled between A-G.
- Every house sold or rented must have a BER.
- BER certification lasts for 10 years.

U-Value Calculations

- Each material has a different U-value. This should be supplied by the manufacturer.
- They are collected together in a table of thermal conductivity.
- When calculating the U-value of a building element such as a wall, the total thermal resistance of each material are added together.

Terminology for Calculations

Conductivity (k)
$$k = \frac{1}{r}$$
(W/mK)Resistivity (r) $r = \frac{1}{k}$ (mK/W)Thickness (T) measured in metres(m)Resistance (R) $R = r x T$ or $R = \frac{T}{k}$ (m²K/W)U-value $= \frac{1}{R^T}$ (W/m²K)

CALCULATION #1

Calculating U-Values

Calculation

Leaving Certificate Higher Level 2010 Question 5 (a)

Calculate the U-value of an uninsulated external solid concrete wall of a dwelling house built in the 1950s given the following data:

External render	thickness	16 mm
Solid concrete wall	thickness	225 mm
Internal plaster	thickness	13 mm

Thermal data of external wall of house:

Resistivity of the solid concrete wa	all (r)	1.190 m °C/W
Resistivity of external render	(r)	2.170 m °C/W
Resistivity of internal plaster	(r)	6.250 m °C/W
Resistance of external surface	(R)	0.048 m ² °C/W
Resistance of internal surface	(R)	0.122 m ² °C/W

Draw a sketch of the building element which you are calculating.

Resistivity of the solid concrete wall Resistivity of external render Resistivity of internal plaster

Draw the table as below.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance R = r x T R = $\frac{T}{k}$
Internal surface	_	_	_	0.122
A Internal plaster		6.250	0.013	
B Solid concrete wall		1.190	0.225	
C External render		2.170	0.016	
External surface	_	_	_	0.048

GET CONSTRUCTIVE

STEP (

Fill in the resistance values.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance R = r x T R = $\frac{T}{k}$
Internal surface	_	_	_	0.122
A Internal plaster	0.16	6.250	0.013	0.08125
B Solid concrete wall	0.84	1.190	0.225	0.26775
C External render	0.46	2.170	0.016	0.03472
External surface	_	_	_	0.048

GET CONSTRUCTIVE

Add the total resistance.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance R = r x T R = $\frac{T}{k}$
Internal surface	_	-	-	0.122
A Internal plaster	0.16	6.250	0.013	0.08125
B Solid concrete wall	0.84	1.190	0.225	0.26775
C External render	0.46	2.170	0.016	0.03472
External surface	_	_	-	0.048

Find R^T by adding all values in the resistance column.

Draw the table as below.

- •U-value is found by getting $\frac{1}{R_T}$ •U-value = 1.8 W/m²K
- •This does not fit with modern building regulations as per table below.

Building element	Maximum acceptable U-value (W/m²k)
Roof (pitched with horizontal insulation)	0.16
Roof (pitched with parallel insulation)	0.16
Roof (flat)	0.2
Wall	0.21
Floor	0.21
Window/Door/Rooflight	1.6

TABLE 16.1 CURRENT (2011) BUILDING REGULATIONS

Increasing U-Value

 By including a cavity in the wall you can increase the thermal efficacy of the wall.

CALCULATION #2

Calculating U-Values

Calculate the U-value for the external wall of a house using the data in Table 16.4.

TABLE 16.4

Fasternal and day thislances 10	Thermal data of automotic		
External render: thickness 19mm	Thermal data of external v Conductivity of render	<i>vau:</i> (k)	0.57 W/mK
Aerated block outer leaf: thickness	-	(11)	0.07 00/1112
100mm	Conductivity of blockwork	(k)	0.18 W/mK
Cavity width: 150mm		. /	
Extruded polystyrene insulation:	Conductivity of insulation	(k)	0.025 W/mK
thickness 100mm	Conductivity of plaster	(k)	0.18 W/mK
	Resistance of		
Aerated block inner leaf: thickness	external surface	(R)	0.053 m ² K/W
100mm	Resistance of cavity	(R)	0.176 m ² K/W
Internal plaster: thickness 15mm	Resistance of		
	internal surface	(R)	0.123 m ² K/W

Draw a sketch of the building element which you are calculating.

GET CONSTRUCTIVE

Draw the table as below.

STEP (2

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance R = r x T R = $\frac{T}{k}$
External surface	-		-	0.053
A External render	0.57		0.019	
B Block outer leaf	0.18		0.1	
C Cavity	-		-	0.176
D Insulation	0.025		0.1	
E Block inner leaf	0.18		0.1	
F Internal plaster	0.18		0.015	
Internal surface	-		-	0.123

GET CONSTRUCTIVE

Fill in the resistance values.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance R = r x T R = $\frac{T}{k}$
External surface	-	-	-	0.053
A External render	0.57	1.754	0.019	0.033
B Block outer leaf	0.18	5.555	0.1	0.555
C Cavity	-	-	-	0.176
D Insulation	0.025	40	0.1	4
E Block inner leaf	0.18	5.555	0.1	0.555
F Internal plaster	0.18	5.555	0.015	0.083
Internal surface	-	-	-	0.123

GET CONSTRUCTIVE

Add the total resistance.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	$ResistanceR = r x TR = \frac{T}{k}$
External surface	-	-	-	0.053
A External render	0.57	1.754	0.019	0.033
B Block outer leaf	0.18	5.555	0.1	0.555
C Cavity	-	-	-	0.176
D Insulation	0.025	40	0.1	4
E Block inner leaf	0.18	5.555	0.1	0.555
F Internal plaster	0.18	5.555	0.015	0.083
Internal surface	-	-	-	0.123

Find R^T by adding all values in the resistance column.

 $R^{T} = 5.578$

Draw the table as below.

•U-value is found by getting $\frac{1}{R_T}$ •U-value = 0.18 W/m²K

•This does fit with modern building regulations as per table below.

TABLE 16.1 CURRENT (2011) BUILDING REGULATIONS

Building element	Maximum acceptable U-value (W/m²k)
Roof (pitched with horizontal insulation)	0.16
Roof (pitched with parallel insulation)	0.16
Roof (flat)	0.2
Wall	0.21
Floor	0.21
Window/Door/Rooflight	1.6

Calculating U-Values with two heat paths

- In some building elements there is more than one way for heat to travel.
- For example, in timber frame construction
 - P_1 through the insulation
 - P₂ through the timber stud

CALCULATION #3

Calculating U-Values

Calculation

т

Calculate the U-value for the timber frame wall using the following data:

т

Brick: thickness 100mm	Thermal data of timber from Conductivity of brick	<i>ime</i> w (k)	<i>all:</i> 0.77 W/mK
Cavity: thickness 50mm	Conductivity of		
Ply sheathing: thickness 12mm	ply sheathing	(k)	0.13 W/mK
, ,	Conductivity of insulation	(k)	0.024 W/mK
Insulation: thickness 150mm	Conductivity of studs	(k)	0.13 W/mK
Studs: thickness 150mm	Conductivity of		
Plasterboard: thickness 13mm	plasterboard	(k)	0.25 W/mK
	Resistance of		
	external surface	(R)	0.053 m ² K/W
	Resistance of cavity	(R)	0.176 m ² K/W
	Resistance of internal surface	(R)	0.123 m ² K/W

Draw a sketch of the building element you are calculating.

GET CONSTRUCTIVE

Draw the table as below.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance $R = r \times T$ $R = \frac{T}{k}$
External surface	-	-	-	0.053
A Brick	0.77		0.1	
B Cavity	-	-	-	0.176
C Ply sheathing	0.13		0.012	
D Insulation	0.024		0.150	
E Studs	0.13		0.150	
F Plasterboard	0.25		0.013	
Internal surface	-	-	_	0.123

GET CONSTRUCTIVE

Fill in the resistance values.

Element	Conductivity $k = \frac{1}{r}$	Resistivity $r = \frac{1}{k}$	Thickness (m)	Resistance R = r x T R = $\frac{T}{k}$
External surface	-	_	-	0.053
A Brick	0.77	1.3	0.1	0.129
B Cavity	-	_	-	0.176
C Ply sheathing	0.13	7.69	0.012	0.092
D Insulation	0.024	41.67	0.150	6.25
E Studs	0.13	7.69	0.150	1.153
F Plasterboard	0.25	4	0.013	0.052
Internal surface	-	_	_	0.123

GET CONSTRUCTIVE

Add the total resistance for each path (Path 1).

-		
INSULATION PATH (1)		
Element	Resistance	
External surface	0.053	
Brick	0.129	
Cavity	0.176	
Ply sheathing	0.092	
Insulation	6.25	
Plasterboard	0.052	
Internal surface	0.123	

Path (1) $R^{T} = 6.87 m^{2} K/W$

GET CONSTRUCTIVE

STEP (4

Add the total resistance for each path (Path 2).

INSULATION PATH (2)		
Element	Resistance	
External surface	0.053	
Brick	0.129	
Cavity	0.176	
Ply sheathing	0.092	
Studs	1.153	
Plasterboard	0.052	
Internal surface	0.123	

Path (2) $R^{T} = 1.78 m^{2} K/W$

GET CONSTRUCTIVE

To calculate combined upper resistance

STEP (4)
$$R_{u} = \frac{1}{\left[\left(\frac{F_{1}}{R_{1}}\right) + \left(\frac{F_{2}}{R_{2}}\right)\right]}$$

Where:

F₁ is the fractional area of heat flow through path 1 (the % make-up of the material)
F₂ is the fractional area of heat flow through path 2
R₁ is the total resistance of path 1
R₂ is the total resistance of path 2

To calculate combined upper resistance

GET CONSTRUCTIVE

To calculate combined lower resistance

$$R_{b} = \frac{1}{\frac{F_{1}}{R_{1}} + \frac{F_{s}}{R_{s}}}$$

Where:

STEP

F₁ is the fractional area of heat flow through path 1 (the % make-up of the material)
F₂ is the fractional area of heat flow through path 2
R₁ is the total resistance of insulation
R₂ is the total resistance of studs

GET CONSTRUCTIVE

To calculate combined upper resistance

Feed the bridged value into the table.

Element	Resistance	
External surface	0.053	
Brick	0.129	
Cavity	0.176	
Ply sheathing	0.092	
Bridged section	4	
Plasterboard	0.052	
Internal surface	0.123	

Total lower resistance $(R_L) = 4.62m^2K/W$

GET CONSTRUCTIVE

Using upper and lower resistance in a formula

Use the total resistance to find the U-value.

U-value = $0.2W/m^2K$

Calculating costs

- The heat loss of a building can be calculated when we have:
 - the U-value
 - the area of the building
 - the difference in internal and external temperature
- It we know the fuel type and the price of that fuel, we can also calculate the cost of heat loss.

CALCULATION #3

Heat loss formula

Total heat loss = U-value x area x temperature difference

Heat loss is measured in Watts

Total heat loss = 0.1645 x 152 x 11 = 275.044 Watts

1 watt = 1 joule per second, therefore 275.044 watts = 275.044 joules per second

To calculate how much heat is lost per year

• Heating period is:

(weeks per year) X (days per week) X (hours per day) X (minutes per hour) X (seconds per hour)

= 41 X 7 X 11 X 60 X 60 = 11365200 seconds

Total number of kilojoules per year calculated

To find cost per year

 Cost per year is: Number of litres X price per litre
 = 83.69 X 0.88
 = €73.65

STEP (

