CHAPTER 16 U-VALUES

U-Values

- U-values refer to how well building materials conduct heat.
- The U-value is a measurement of the amount of heat lost from a material.
- The U-value is:
"The heat transfer of 1 Kelvin through $1 \mathrm{~m}^{2}$ of a building material"

Or

U-value $=\mathbf{W} / \mathbf{m}^{2} \mathrm{~K}$

U-Values

U-value $=\mathbf{W} / \mathbf{m}^{2} \mathrm{~K}$

W = Watt (unit of electricity)

$\mathrm{m}=$ metre
$K=$ Kelvin (unit of
temperature)

U-Values

- The lower the U-value, the less heat that is lost through the building materials.
- U-values vary according to the following:
- The materials used in the building
- The building's location
- The temperature difference between the outside and the inside

Building Element Values

Building regulations set out the maximum U-values for each element of the building. The current values can be seen in the table below.

TABLE 16.1 CURRENT (2011) BUILDING REGULATIONS

Building element	Maximum acceptable U-value (W/m²k)
Roof (pitched with horizontal insulation)	0.16
Roof (pitched with parallel insulation)	0.16
Roof (flat)	0.2
Wall	0.21
Floor	0.21
Window/Door/Rooflight	1.6

Building Energy Rating (BER)

- BER gives an assessment of the efficiency of the home.
- It considers:
- The energy used by the building
- The CO_{2} output of the building
- It is expressed as primary energy use per unit of floor area per year $\mathrm{kWh} / \mathrm{m}^{2} / \mathbf{y r}$

Building Energy Rating (BER)

- Energy ratings are scaled between A-G.
- Every house sold or rented must have a BER.
- BER certification lasts for 10 years.

U-Value Calculations

- Each material has a different U-value. This should be supplied by the manufacturer.
- They are collected together in a table of thermal conductivity.
- When calculating the U-value of a building element such as a wall, the total thermal resistance of each material are added together.

Terminology for Calculations

Conductivity (k) $k=\frac{1}{r}$
(W/mK)
(mKN)
(m)
($\mathrm{m}^{2} \mathrm{~K} N \mathrm{~N}$)
($\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$)

Calculating U-Values

Calculation

Leaving Certificate Higher Level 2010 Question 5 (a)
Calculate the U-value of an uninsulated external solid concrete wall of a dwelling house built in the 1950s given the following data:

External render thickness 16 mm
Solid concrete wall thickness 225 mm
Internal plaster thickness 13 mm
Thermal data of external wall of house:
Resistivity of the solid concrete wall (r) $\quad 1.190 \mathrm{~m}{ }^{\circ} \mathrm{C} / \mathrm{W}$
Resistivity of external render
(r) $2.170 \mathrm{~m}^{\circ} \mathrm{C} / \mathrm{W}$

Resistivity of internal plaster
(r) $\quad 6.250 \mathrm{~m}^{\circ} \mathrm{C} / \mathrm{W}$

Resistance of external surface
(R) $0.048 \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$

Resistance of internal surface
(R) $0.122 \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$

Draw a sketch of the building element which you are calculating.

step (1)

Resistivity of the solid concrete wall
Resistivity of external render
Resistivity of internal plaster

Draw the table as below.

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{r} \times \mathrm{T}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
Internal surface	-	-	-	0.122
A Internal plaster		6.250	0.013	
B Solid concrete wall		1.190	0.225	
C External render		2.170	0.016	
External surface	-	-	-	0.048

Fill in the resistance values.

Element	Conductivity $\mathrm{k}=\frac{1}{r}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{r} \times \mathrm{x}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
Internal surface	-	-	-	0.122
A Internal plaster	0.16	6.250	0.013	0.08125
B Solid concrete wall	0.84	1.190	0.225	0.26775
C External render	0.46	2.170	0.016	0.03472
External surface	-	-	-	0.048

Add the total resistance.

Step 4

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{r} \times \mathrm{x}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{r}}$
Internal surface	-	-	-	0.122
A Internal plaster	0.16	6.250	0.013	0.08125
B Solid concrete wall	0.84	1.190	0.225	0.26775
C External render	0.46	2.170	0.016	0.03472
External surface	-	-	-	0.048

Find R^{\top} by adding all values in the resistance column.

$\mathrm{R}^{\mathrm{T}}=0.55372$

Draw the table as below.

$\cdot \mathrm{U}$-value is found by getting

- U-value $=1.8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
R_{T}
-This does not fit with modern building regulations as per table below.

TABLE 16.1 CURRENT (2011) BUILDING REGULATIONS

Building element	Maximum acceptable U-value (W/m² $\mathbf{~} \mathbf{~})$
Roof (pitched with horizontal insulation)	0.16
Roof (pitched with parallel insulation)	0.16
Roof (flat)	0.7
Wall	0.21
Floor	0.21
Window/Door/Rooflight	1.6

Increasing U-Value

- By including a cavity in the wall you can increase the thermal efficacy of the wall.

CALCULATION \#2

Calculating U-Values

Calculate the U-value for the external wall of a house using the data in Table 16.4.

TABLE 16.4

External render: thickness 19 mm
Aerated block outer leaf: thickness 100 mm

Cavity width: 150 mm
Extruded polystyrene insulation:
thickness 100 mm
Aerated block inner leaf: thickness
100 mm
Internal plaster: thickness 15 mm

Draw a sketch of the building element which you are calculating.

STEP

External render: thickness 19 mm
Aerated block outer leaf: thickness 100 mm

Cavity width: 150 mm
Extruded polystyrene insulation: thickness 100 mm

Aerated block inner leaf: thickness 100 mm

Internal plaster: thickness 15 mm

Draw the table as below.

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{r} \times \mathrm{T}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
External surface	-		-	0.053
A External render	0.57		0.019	
B Block outer leaf	0.18		0.1	
C Cavity	-		-	0.176
D Insulation	0.025		0.1	
E Block inner leaf	0.18		0.1	
F Internal plaster	0.18		0.015	
Internal surface	-		-	0.123

Fill in the resistance values.

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{r} \times \mathrm{x}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
External surface	-	-	-	0.053
A External render	0.57	1.754	0.019	0.033
B Block outer leaf	$\mathbf{0 . 1 8}$	5.555	0.1	0.555
C Cavity	-	-	-	0.176
D Insulation	0.025	40	0.1	4
E Block inner leaf	$\mathbf{0 . 1 8}$	5.555	0.1	0.555
F Internal plaster	$\mathbf{0 . 1 8}$	5.555	0.015	0.083
Internal surface	-	-	-	0.123

Add the total resistance.

STEP (4)

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{r} \times \mathrm{T}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
External surface	-	-	-	0.053
A External render	0.57	1.754	0.019	0.033
B Block outer leaf	0.18	5.555	0.1	0.555
C Cavity	-	-	-	0.176
D Insulation	0.025	40	0.1	4
E Block inner leaf	0.18	5.555	0.1	0.555
F Internal plaster	0.18	5.555	0.015	0.083
Internal surface	-	-	-	0.123

Find R^{\top} by adding all values in the resistance column.

$$
R^{\top}=5.578
$$

Draw the table as below.

\cdot U-value is found by getting

- U-value $=0.18 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
-This does fit with modern building regulations as per table below.

TABLE 16.1 CURRENT (2011) BUILDING REGULATIONS

Building element	Maximum acceptable U-value (W/m² $\mathbf{k})$
Roof (pitched with horizontal insulation)	0.16
Roof (pitched with parallel insulation)	0.16
Roof (flat)	0)
Wall	0.21
Froor	0.21
Window/Door/Rooflight	1.6

Calculating U-Values with two heat paths

- In some building elements there is more than one way for heat to travel.
- For example, in timber frame construction
$-P_{1}$ through the insulation
$-P_{2}$ through the timber stud

CALCULATION \#3

Calculating U-Values

Calculation

Calculate the U -value for the timber frame wall using the following data:

Brick: thickness 100 mm
Cavity: thickness 50 mm
Ply sheathing: thickness 12 mm
Insulation: thickness 150 mm
Studs: thickness 150 mm
Plasterboard: thickness 13 mm

Thermal data of timber frame wall:

Conductivity of brick (k) $0.77 \mathrm{~W} / \mathrm{mK}$
Conductivity of ply sheathing
(k) $0.13 \mathrm{~W} / \mathrm{mK}$

Conductivity of insulation (k) $0.024 \mathrm{~W} / \mathrm{mK}$
Conductivity of studs (k) $0.13 \mathrm{~W} / \mathrm{mK}$
Conductivity of
plasterboard (k) $0.25 \mathrm{~W} / \mathrm{mK}$
Resistance of
external surface (R) $0.053 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$
Resistance of cavity (R) $0.176 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$
Resistance of internal surface \quad (R) $0.123 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$

Draw a sketch of the building element you are calculating. step (1)

Brick: thickness 100 mm
Cavity: thickness 50 mm
Ply sheathing: thickness 12 mm
Insulation: thickness 150 mm
Studs: thickness 150 mm
Plasterboard: thickness 13 mm

Draw the table as below.

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{rx} \mathrm{T}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
External surface	-	-	-	0.053
A Brick	0.77		0.1	
B Cavity	-	-	-	0.176
C Ply sheathing	0.13		0.012	
D Insulation	0.024		0.150	
E Studs	0.13		0.150	
F Plasterboard	0.25		0.013	
Internal surface	-	-	-	0.123

Fill in the resistance values.

Element	Conductivity $\mathrm{k}=\frac{1}{\mathrm{r}}$	Resistivity $\mathrm{r}=\frac{1}{\mathrm{k}}$	Thickness (m)	Resistance $\mathrm{R}=\mathrm{rx} \mathrm{T}$ $\mathrm{R}=\frac{\mathrm{T}}{\mathrm{k}}$
External surface	-	-	-	0.053
A Brick	0.77	1.3	0.1	0.129
B Cavity	-	-	-	0.176
C Ply sheathing	0.13	7.69	0.012	0.092
D Insulation	0.024	41.67	0.150	6.25
E Studs	$\mathbf{0 . 1 3}$	7.69	0.150	1.153
F Plasterboard	0.25	4	0.013	0.052
Internal surface	-	-	-	0.123

Add the total resistance for each path (Path 1).

INSULATION PATH (1)	
Element	Resistance
External surface	0.053
Brick	0.129
Cavity	0.176
Ply sheathing	0.092
Insulation	6.25
Plasterboard	0.052
Internal surface	0.123

$$
\text { Path (1) } R^{\top}=6.87 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
$$

Add the total resistance for each path (Path 2).
 stex (4)

INSULATION PATH (2)	
Element	Resistance
External surface	0.053
Brick	0.129
Cavity	0.176
Ply sheathing	0.092
Studs	1.153
Plasterboard	0.052
Internal surface	0.123

$$
\text { Path (2) } \mathrm{R}^{\top}=1.78 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
$$

To calculate combined upper resistance

Step (4)

$$
R_{u}=\frac{1}{\left[\left(\frac{F_{1}}{R_{1}}\right)+\left(\frac{F_{2}}{R_{2}}\right)\right]}
$$

Where:
F_{1} is the fractional area of heat flow through path 1 (the \% make-up of the material)
F_{2} is the fractional area of heat flow through path 2
R_{1} is the total resistance of path 1
R_{2} is the total resistance of path 2

To calculate combined upper resistance

Step (4)

$$
R_{u}=\frac{1}{\left[\left(\frac{F_{1}}{R_{1}}\right)+\left(\frac{F_{2}}{R_{2}}\right)\right]}
$$

Where:

$$
\begin{aligned}
\mathrm{F}_{1} & =0.875 \\
\mathrm{~F}_{2} & =0.125 \\
\mathrm{R}_{1} & =6.87 \\
\mathrm{R}_{2} & =1.78
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{u}}=\frac{1}{\frac{0.875}{6.87}+\frac{0.125}{1.78}}
$$

$$
R_{u}=\frac{1}{0.197}
$$

To calculate combined lower resistance

$$
R_{b}=\frac{1}{\frac{F_{1}}{R_{1}}+\frac{F_{S}}{R_{S}}}
$$

Where:
F_{1} is the fractional area of heat flow through path 1
(the \% make-up of the material)
F_{2} is the fractional area of heat flow through path 2
R_{1} is the total resistance of insulation
R_{2} is the total resistance of studs

To calculate combined upper resistance

STEP (5)

$$
R_{b}=\frac{1}{\frac{F_{1}}{R_{1}}+\frac{F_{S}}{R_{S}}}
$$

$$
R_{b}=\frac{1}{\frac{0.875}{6.25}+\frac{0.125}{1.153}}
$$

Where:

$$
\begin{aligned}
\mathrm{F}_{1} & =0.875 \\
\mathrm{~F}_{\mathrm{S}} & =0.125 \\
\mathrm{R}_{1} & =6.25 \\
\mathrm{R}_{\mathrm{S}} & =1.153
\end{aligned}
$$

$$
\begin{aligned}
& R_{b}=\frac{1}{0.248}=4 \\
& R_{b}=4 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

Feed the bridged value into the table.

STEP 6

Element	Resistance
External surface	0.053
Brick	0.129
Cavity	0.176
Ply sheathing	0.092
Bridged section	4
Plasterboard	0.052
Internal surface	0.123

Total lower resistance $\left(R_{L}\right)=4.62 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$

Using upper and lower resistance in a formula

$$
R^{\mathrm{T}}=\frac{\mathrm{R}_{\mathrm{U}}+\mathrm{R}_{\mathrm{L}}}{2} \quad \mathrm{R}^{\mathrm{T}}=\frac{5.07+4.62}{2}
$$

$$
\mathrm{R}^{\mathrm{T}}=\frac{9.69}{2}=4.845
$$

Use the total resistance to find the U-value.

STEP

$\frac{1}{R^{\top}}=U$-value

U-value $=0.2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

Calculating costs

- The heat loss of a building can be calculated when we have:
- the U-value
- the area of the building
- the difference in internal and external temperature
- It we know the fuel type and the price of that fuel, we can also calculate the cost of heat loss.

Heat loss formula

Step (1)

Total heat loss = U-value \mathbf{x} area \mathbf{x} temperature difference
Heat loss is measured in Watts

Total heat loss $=0.1645 \times 152 \times 11=275.044$ Watts

1 watt = 1 joule per second, therefore 275.044 watts $=275.044$ joules per second

To calculate how much heat is lost per year

step (2)

- Heating period is:
(weeks per year) X (days per week) X (hours per day) X (minutes per hour) X (seconds per hour)
$=41 \times 7 \times 11 \times 60 \times 60=11365200$ seconds

Total number of kilojoules per year calculated

STEP (3)

$=\frac{11365200 \times 275.044}{1000}$
$=3125930 \mathrm{~kJ}$ per year

To find cost per year

step (4)

- Cost per year is: Number of litres X price per litre
$=83.69 \times 0.88$
= €73.65

